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Abstract— Humanoid robots are anticipated to acquire a
wide range of locomotion capabilities while ensuring natural
movement across varying speeds and terrains. Existing methods
encounter a fundamental dilemma in learning humanoid loco-
motion: reinforcement learning with handcrafted rewards can
achieve agile locomotion but produces unnatural gaits, while
Generative Adversarial Imitation Learning (GAIL) with motion
capture data yields natural movements but suffers from unsta-
ble training processes and restricted agility. Integrating these
approaches proves challenging due to the inherent heterogeneity
between expert policies and human motion datasets. To address
this, we introduce StyleLoco, a novel two-stage framework
that bridges this gap through a Generative Adversarial Dis-
tillation (GAD) process. Our framework begins by training a
teacher policy using reinforcement learning to achieve agile
and dynamic locomotion. It then employs a multi-discriminator
architecture, where distinct discriminators concurrently extract
skills from both the teacher policy and motion capture data.
This approach effectively combines the agility of reinforcement
learning with the natural fluidity of human-like movements
while mitigating the instability issues commonly associated with
adversarial training. Through extensive simulation and real-
world experiments, we demonstrate that StyleLoco enables
humanoid robots to perform diverse locomotion tasks with the
precision of expertly trained policies and the natural aesthetics
of human motion, successfully transferring styles across differ-
ent movement types while maintaining stable locomotion across
a broad spectrum of command inputs.

I. INTRODUCTION

Natural and agile locomotion in humanoid robots repre-
sents a fundamental challenge in robotics, with far-reaching
implications for human-robot interaction, disaster response,
and industrial applications. While humanoid robots offer
unprecedented potential for operating in human-centric envi-
ronments, achieving human-like movement patterns remains
difficult due to their high degrees of freedom and inherently
unstable dynamics[1]. This challenge is further complicated
by the fundamental trade-off between achieving precise con-
trol and maintaining natural motion qualities.

Reinforcement learning (RL) has emerged as a powerful
approach for developing locomotion controllers, enabling
robots to master complex movements through carefully de-
signed reward functions. These methods often employ a two-
stage learning process: first training a teacher policy that
relies on privileged information (such as global positions and
ground truth environmental parameters) unavailable in real-
world settings, then distilling this knowledge into a student
policy that operates solely on realistic sensor observations.
While this approach has demonstrated impressive results in

Fig. 1. Gait pattern transitions during forward velocity (vx) acceleration
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terms of agility and precision, it faces two key limitations.
First, the reliance on handcrafted rewards requires extensive
tuning to accommodate different gaits, stride lengths, and
motion parameters across varying speeds. Second, these
methods often result in rigid, mechanical movements that
lack the fluidity and naturalness characteristic of human
motion, limiting their effectiveness in human-centric envi-
ronments.

Recent advances in generative adversarial imitation learn-
ing, particularly approaches like Adversarial Motion Prior
(AMP) [2], have opened new possibilities for achieving more
natural robot movements by leveraging large-scale motion
capture datasets such as LaFAN1 [3] and AMASS [4]. These
methods employ adversarial training to ensure that robot
movements closely match the statistical patterns present in
human demonstrations [5]. However, their performance is
fundamentally limited by the content and quality of the ref-
erence motion data. For instance, learning running behaviors
becomes impossible with a dataset containing only walking
motions, and acquiring diverse specialized skills often re-
quires expensive motion capture sessions. Furthermore, these
methods struggle when motion datasets lack diversity or
when retargeting processes introduce artifacts, resulting in
brittle behaviors that fail to generalize beyond demonstrated
movements.

The limitations of both approaches highlight a critical gap
in humanoid locomotion: the need to combine the precision
and adaptability of RL-based controllers with the natu-
ral movement qualities captured in human demonstrations.
While RL methods can learn complex skills beyond available



motion capture data, they struggle with natural movement
generation. Conversely, demonstration-based methods excel
at producing natural movements but are constrained by the
available motion capture data. This complementary nature
suggests the potential for combining both approaches, yet
traditional methods struggle to bridge this gap due to the
fundamental heterogeneity between expert policies trained
with handcrafted rewards and the statistical patterns present
in human motion datasets.

We address these challenges with StyleLoco, introduc-
ing a novel Generative Adversarial Distillation (GAD) frame-
work that effectively combines knowledge from heteroge-
neous sources. Our approach employs a multi-discriminator
architecture where separate discriminators simultaneously
distill skills from both an RL-trained expert policy and
motion capture demonstrations. This design allows the model
to preserve the agility and precision of RL while incor-
porating the natural style of human movements, enabling
natural skill execution even for behaviors not present in the
motion capture data. Through extensive evaluations in both
simulated and real-world environments, we demonstrate that
StyleLoco enables humanoid robots to achieve superior
locomotion performance compared to traditional approaches
while maintaining natural, human-like movement qualities.

The key contribution of our work is three-fold.
• A novel GAD framework that enables stable pol-

icy distillation from heterogeneous sources, effectively
bridging the gap between RL and demonstration-based
approaches.

• A multi-discriminator architecture that successfully
combines task-oriented control objectives with natural
motion patterns, achieving both high performance and
human-like movement qualities.

• Comprehensive validation through real-world deploy-
ment on the Unitree H1 humanoid robot, demonstrating
robust and natural motion across diverse locomotion
tasks and speeds.

II. RELATED WORKS

A. Humanoid Robot Locomotion

Locomotion is a critical aspect in the motion control
in humanoid robots. Traditional methods typically achieve
stable movement by formulating the robot’s dynamics model
as constrained trajectory optimization problems [6]. Model
Predictive Control (MPC) [7], [8], [9] is then employed
in real-time to adjust and execute this trajectory, enabling
adaption to dynamic environmental changes. However, these
model-based methods usually rely heavily on precise model-
ing of robot dynamic properties[10], [11], [12], [13], [14]
and environmental conditions[15], [16], [17], [18], [12],
[19], [20], [21], [22], which leads to vulnerabilities in real-
world performance , especially when there is a substantial
discrepancy between the applied environments and the pre-
defined conditions [23]. Thus, the optimization problem for
humanoid robots is slow to resolve due to the complexity
of high-dimensional state and action spaces, rendering it

challenging to satisfy the demands for real-time performance
and stability.

Recently, reinforcement learning (RL) has emerged as a
promising paradigm for humanoid locomotion tasks. These
methods design tailored reward functions to guide “try and
error” feedback-based learning process. For instance, reward
functions are often crafted to encourage stable walking,
minimize energy consumption, or optimize trajectory track-
ing [24]. However, designing effective reward functions is
non-trivial and often requires extensive domain expertise
especially for particular locomotion gaits. Natural locomo-
tion motions require different gaits for varying movement
speeds, making the design of the reward function even more
challenging. Moreover, the numerous rewards terms must
strike a delicate balance between competing objectives. To
alleviate these drawbacks, we incorporate diverse reference
locomotion motions as style guidance to simplify the reward
components and encourage the policy learn versatile gaits.

B. Imitation Learning for Humanoid locomotion

The fundamental challenges in learning high-dimensional,
underactuated robotic systems include precise task specifi-
cation and effective exploration. Imitation learning (IL) is a
method that learns from expert demonstrations, effectively
addressing challenges related to quantifying rewards. Unlike
pure reinforcement learning, IL can directly leverage offline
expert data to guide policy learning, significantly reducing
the exploration space and obtaining dense rewards. This
approach is particularly effective in real-world robotics and
complex task scenarios. Typically, it involves directly fol-
lowing reference trajectories through motion tracking. Gen-
erative Adversarial Imitation Learning (GAIL) [25] has been
applied to locomotion tasks. The traditional imitation learn-
ing method, as mentioned above, is limited in flexibility—it
can only replicate reference trajectories and cannot adapt
to downstream tasks. To address this limitation, AMP [2]
introduces the concept of learning the style from reference
motion as a constraint, guiding the policy learning process.

However, this paradigm heavily relies on expert demon-
strations, and its performance can significantly degrade when
the quality of demonstrations is poor or when the task
changes. Since IL strategies are directly derived from the
demonstrations, they are prone to overfitting to the demon-
stration data. As a result, when faced with novel situations, IL
may lack sufficient generalization ability. Furthermore, due
to the morphological differences between humanoid robots
and humans, obtaining high-quality reference data proves
challenging, resulting in datasets that can only encompass
a limited range of instructions. This scarcity of data can
compromise the stability of Generative Adversarial Imitation
Learning (GAIL), leading to mode collapse. To mitigate
these challenges, we supplement the expert policy as a
reference motion, providing additional motion references to
achieve a stable omnidirectional movement strategy.



C. Deployable Policy Distillation

In robotic locomotion control, distillation is a method that
transfers knowledge from teacher policies with privileged
information (e.g., full-state dynamics, simulated ground-truth
forces, or ideal state estimators) to student policies for
real-world deployment. This knowledge transfer enables the
student to leverage the teacher’s expertise while operating
under real-world constraints, such as partial observation or
limited sensory inputs. There are two main approaches to
distillation:

BC methods[26], [27] learn by mimicking the teacher’s
actions using supervised learning on state-action pairs. BC
achieves effective performance when the student operates
within the teacher’s training distribution, as it directly repli-
cates the teacher’s behavior under familiar conditions. How-
ever, its performance degrades sharply with “compounding
error” [28] in out-of-distribution (OOD) scenarios (e.g., envi-
ronmental perturbations, actuator noise, or unseen terrains),
as BC inherently lacks the capacity to self-correct devia-
tions from the teacher’s demonstration space. This limitation
arises because BC relies solely on static datasets of teacher
demonstrations, without mechanisms to adapt to novel or
unexpected situations.

Another popular approach is online distillation via Dataset
Aggregation (DAgger) [29], which addresses BC’s limita-
tions by iteratively aggregating student-generated trajectories
with teacher-corrected actions. Recently, DAgger and its
derivative strategies have stood out as a promising distillation
approach for humanoid robot [30], [31], [32], [33] to ac-
quire deployable policies. During training, the student policy
interacts with the environment, while the teacher provides
corrective feedback on the student’s actions, enabling the
student to refine its policy over multiple iterations. This
interactive process mitigates distributional shift and im-
proves robustness to OOD scenarios. However, DAgger still
faces a fundamental challenge: the student lacks access to
the teacher’s privileged information (e.g., simulated contact
forces, ideal state estimators, or full-state dynamics). As a
result, under partial observation or incomplete environmental
feedback, the student struggles to fully replicate the teacher’s
actions. [24]

III. METHOD
StyleLoco is a novel approach for learning deployable

natural locomotion skills that effectively combines the preci-
sion of RL-based controllers with the naturalness of human
demonstrations. At its core, StyleLoco employs our pro-
posed Generative Adversarial Distillation (GAD) framework,
which uses a unique double-discriminator architecture to
distill knowledge from both an RL-trained teacher policy
and human motion demonstrations into a deployable student
policy. Through adversarial learning, our approach gener-
ates naturalistic motions beyond the constraints of available
motion capture data while avoiding the artificial behaviors
typically resulting from hand-crafted rewards.
StyleLoco consists of three key components: (1) a

teacher policy trained with privileged information to achieve

robust omnidirectional locomotion, (2) a motion dataset con-
taining natural human movements, and (3) our novel GAD
framework that combines these sources to train a deployable
student policy. The framework’s innovation lies in its ability
to generate natural behaviors beyond what either source can
achieve alone - overcoming both the limited coverage of
motion datasets and the unnatural movements that emerge
from pure RL training.

To achieve this, StyleLoco employs two discriminators
that work in concert to adversarially shape the student
policy’s behavior. One discriminator ensures the policy can
replicate the robust performance of the teacher, while the
other maintains consistency with natural human motion
patterns. This dual-discriminator approach simultaneously
serves two purposes: expanding the range of natural be-
haviors beyond the demonstration data, and distilling the
teacher’s capabilities into a deployable policy. The resulting
system produces controllers that are both highly capable and
naturally moving, without being constrained to demonstrated
behaviors or exhibiting artifacts from hand-crafted rewards.

A. Preliminaries

1) Reinforcement Learning: We formulate humanoid lo-
comotion control as a Partially Observable Markov Decision
Process (POMDP) defined by tuple ⟨S,A, T,O, R, γ⟩, where
S represents the full state space, O denotes partial observa-
tions available to the robot, A is the action space, T (s′|s, a)
describes state transitions, R(s, a) defines the reward func-
tion, and γ ∈ (0, 1] is the discount factor. The goal is to learn
a policy π(a|o) that maximizes expected discounted returns
while operating only on partial observations o ∈ O.

The locomotion task requires tracking commanded ve-
locities v∗ = (v∗x, v

∗
y , ω

∗
z), where (v∗x, v

∗
y) specify desired

linear velocities in local coordinate frame and ω∗
z defines the

desired yaw rate. Following [34], we use the reward function:

rtask(e, λ) := exp(−λ · ∥e∥2)

where e represents tracking errors and λ controls their
relative importance.

2) Generative Adversarial Imitation Learning: Genera-
tive Adversarial Imitation Learning (GAIL) learns to mimic
expert behavior through adversarial training. Given a dataset
of expert demonstrations M = (si, ai) consisting of state-
action pairs, GAIL trains a policy π(a|s) that generates
actions a′ for given states s′. A discriminator network D
is employed to distinguish between state-action pairs (s, a)
from the expert demonstrations and those produced by the
policy π. The reward function used to train the policy is then
given by:

rGAIL(s, a) = −log (1−D(s, a))

Adversarial Motion Prior (AMP) [2] extends this frame-
work to handle settings where only state information is
available in the demonstrations. Instead of operating on
state-action pairs, AMP’s discriminator evaluates state tran-
sitions (s, s′), enabling imitation learning from state-only
demonstrations. Additionally, AMP employs a least-squares
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Fig. 2. Overview of the proposed Generative Adversarial Distillation
(GAD) framework. Two discriminators separately evaluate the similarity
of generated motions against a teacher policy and reference motion dataset,
enabling the synthesis of natural and adaptive behaviors.

discriminator [35], replacing the traditional binary cross-
entropy loss, which has been empirically shown to provide
more stable adversarial training dynamics.

B. Generative Adversarial Distillation

The core innovation of StyleLoco is our GAD frame-
work, which synthesizes natural and adaptive behaviors from
two complementary sources: a well-trained teacher policy
and a reference motion dataset. As illustrated in Fig. 2,
GAD trains a student policy πstudent alongside two AMP-
style discriminators, Dteacher and Ddataset. Each discriminator
evaluates the student’s generated state transitions against one
source of reference motions: either the teacher policy or the
motion dataset.

Training proceeds in an interleaving manner, alternating
between updating the student policy and the discriminators.
In each iteration, we first update the student policy using
the combined feedback from both discriminators and then
train both discriminators to better distinguish between the
student’s outputs and their respective reference motions.

The teacher discriminator Dteacher optimizes:

arg min
Dteacher

E(s,s′)∼πteacher

[
(Dteacher(s, s

′)− 1)
2
]

+ E(s,s′)∼πstudent

[
(Dteacher(s, s

′) + 1)
2
]

+ λE(s,s′)∼πteacher

[
∥∇(s,s′)Dteacher(s, s

′)∥2
]
,

while the reference discriminator Ddataset ensures natural
motion qualities by optimizing:

arg min
Ddataset

E(s,s′)∼M

[
(Ddataset(s, s

′)− 1)
2
]

+ E(s,s′)∼πstudent

[
(Ddataset(s, s

′) + 1)
2
]

+ λE(s,s′)∼M
[
∥∇(s,s′)Ddataset(s, s

′)∥2
]
,

where λ controls the gradient penalty term that ensures stable
training.

The student policy learns from a combined reward func-
tion:

r = rtask + wteacher · rteacher + wdataset · rdataset,

where the discriminator rewards are computed as:

rteacher = max
[
0, 1− 0.25(Dteacher(s, s

′)− 1)2
]

rdataset = max
[
0, 1− 0.25(Ddataset(s, s

′)− 1)2
]

Both discriminators process state transitions using a con-
sistent feature set comprising joint positions and velocities,
root linear and angular velocities in the robot’s local frame,
base link orientation (roll and pitch), and root height. This
common representation enables effective comparison across
different motion sources while capturing the essential char-
acteristics of locomotion behavior.

Deployable Policy Distillation A key aspect of our
framework is enabling the student policy πstudent to generate
actions when privileged observations are unavailable in real-
world deployment. While the teacher policy benefits from
privileged information during training to better understand
task objectives and achieve efficient convergence, the student
policy must learn to generate appropriate actions using only
deployable sensor observations. This asymmetric approach
allows us to leverage rich state information during training
while ensuring the final policy remains deployable. The
specific observations available to the student policy are
detailed in Table I.

C. Training Process

Curriculum Learning Teacher policy πteacher training
adopts a curriculum learning approach comprised of two dis-
tinct phases. The initial stability phase prioritizes maintain-
ing balance and preventing falls, establishing fundamental
stability behaviors. This is followed by the mobility phase,
where the policy develops comprehensive omnidirectional
locomotion capabilities. The specific reward components for
each phase are detailed in Table II.

Demonstration Data Preparation The locomotion mo-
tion data in this work is sourced from the LaFAN1 dataset
and meticulously retargeted to conform to the kinematic
specifications of Unitree H1 robots. While this dataset of-
fers diverse motion styles and velocity ranges, utilizing all
demonstrations simultaneously introduces ambiguity in the
learning process. To facilitate distinct gait style demonstra-
tions across different velocity commands, we strategically
selected motion clips with minimal or non-overlapping veloc-
ity ranges, ensuring a relatively clear behavioral boundaries
between different locomotion patterns.

Asymmetric Actor-critic Architecture Student policy
training utilizes an asymmetric actor-critic architecture to
effectively handle partial observability in real-world con-
ditions. The student’s observation processing begins with
temporal partial observations oNt = [ot−n, ot−n+1...ot]

T .
These observations are first processed through a partial states
encoder E to generate context latent representations, which
are then combined with the current partial state observations



TABLE I
AVAILABLE OBSERVATIONS IN TRAINING

Sources Phase CmdVel DoFPos DoFVel LastAction Diff BaseLinVel BaseAngVel RPY Root Height Push Fraction BodyMass ContactStatus

Teacher ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Dataset ✓ ✓ ✓ ✓ ✓ ✓
Student ✓ ✓ ✓ ✓ ✓ ✓

Notes:
• Phase: Indicates the phase of motion, serving as a temporal marker.
• Diff: Difference between current joint angular position and reference joint angular position, calculated based on Phase.
• ContactStatus: Information regarding the stance mask and feet contact forces.

and the velocity command. The resulting combined represen-
tation passes through MLP layers to produce the final control
actions.

TABLE II
REWARD DEFINITIONS USED IN TEACHER POLICY TRAINING.

Term Definition Weight

First Stage

Termination rtermination = Ireset − Itimeout -1000

Linear Velocity Tracking exp
(
−

∥vtarget
xy −vxy∥2

0.1

)
10

Angular Velocity Tracking exp
(
− ∥ωtarget

z −ωz∥2
0.1

)
10

Linear Velocity z ∥vz∥2 -1.0
R-P Angular Velocity ∥ωxy∥2 -0.5

Orientation
∑

i∈{x,y}

(
projected gravityi

)2 -1.0

Base Height exp
(
−100

∣∣∣hbase − htarget

∣∣∣) where hbase = zroot − (hfeet − 0.08) 0.5

Action Rate ∥at − at−1∥2 -0.01

Energy Square
∑10

i=1(τi q̇i)
2

1 + ∥cxy∥2
-5e-6

Stand Still
(∑∣∣q − qdefault) · Istand -1

Feet Clearance
∑
i

I
{∣∣hfeet,i − htarget

∣∣ < 0.01
}
·
(
1− gait phasei

)
2.5

Feet Contact Number mean
(
I{contact=stance mask} − I{contact̸=stance mask}

)
1

Default Joint Position ∥q[1:2] − qdefault
[1:2]

∥2 + ∥q[6:7] − qdefault
[6:7]

∥2 0.5

Action Smoothness ∥at−2 − 2at−1 + at∥2 -0.001

Feet Slip 1−
∑

i exp
(
−∥vfoot,i

xy ∥2
)

-0.05

Reference Joint Position exp(−2∥q − qref∥2)− 0.5min(∥q − qref∥2, 0.5) 10

Pelvis-Ankle y Distance (∥ypelvis pitch − yankle L∥+ ∥ypelvis pitch − yankle R∥) · I{|vy|<0.1} -5

Upper Joint Constraints
∑

∥q[12:14] − qdefault
[12:14]∥+

∑
∥q[16:18] − qdefault

[16:18]∥+ ∥q10 − qdefault
10 ∥ -5

Second Stage

Joint Torque ∥τ∥2 -2e-5

Joint Acceleration ∥q̈∥2 -1e-6

Feet Contact Forces
∑
i

max
(
∥contact forcei∥2 − Fmax, 0

)
-0.01

Torque When Stand-Still
∑[

(τt − τt−1)
2 + (τt + τt−2 − 2τt−1)

2
]
· Istand -1e-3

Body Pitch ∥pitch − 0.01∥ -5

Body Roll ∥roll∥ -10

Track Velocity Hard
e−10∥vtarget

xy −vxy∥ + e−10|ωtarget
z −ωz |

2
− 0.2(∥verror

xy ∥+ |ωerror
z |) 50

Ankle Air Time
∑
i

(tair,i − 0.2) · Ifirst contact,i · −Istand still 100

Ankle Limits −
∑

i∈{4,9}
clip(qi − qmin,i, 0) + clip(qmax,i − qi, 0) -200

Notes:
• IA = 1 if A = true and IA = 0 otherwise.
• The maximum allowable feet contact force Fmax is set to 550N

D. Implementation and Deployment Details

Both policies are implemented using the Proximal Policy
Optimization (PPO) algorithm [36], with comprehensive
domain randomization ensuring robust real-world transfer.

Domain Randomization Following existing researches on
humanoid whole-body control, our domain randomization
encompasses three aspects: physical parameter variations,
systematic observation noise injection, and randomized ex-
ternal force perturbations. The physical parameters include
variations in mass distribution, joint properties, and surface
interactions. Observation noise is carefully calibrated to
match real-world sensor characteristics, while external forces

simulate unexpected disturbances the robot might encounter
during deployment.

Safe Deployment Safe deployment is achieved through
torque limiting. This controller continuously monitors and
adjusts torque outputs to remain within safe operational
limits. The deployment architecture operates with the policy
executing at 50Hz, while the low-level control loop maintains
precise actuation at 1000Hz, ensuring responsive and stable
behavior.

Real-world execution incorporates additional safety mea-
sures through continuous monitoring of joint positions, ve-
locities, and torques. When approaching operational limits,
the system smoothly modulates commands to maintain safe
operation while preserving task performance. This approach
enables robust deployment across varying conditions while
protecting the hardware from potential damage.

IV. EXPERIMENTS
We conduct comprehensive experiments in both simula-

tion and real-world environments to evaluate StyleLoco’s
effectiveness in generating natural and adaptive locomotion
behaviors. Our evaluation framework addresses four key as-
pects: (1) the effectiveness of GAD’s distillation capabilities,
(2) the accuracy of velocity tracking during locomotion tasks,
(3) the quality of motion style reproduction, and (4) real-
world deployment performance.

All experiments are conducted using the Unitree H1 hu-
manoid robot in both simulated and physical environments.
For reference motions, we utilize the LaFAN1 dataset, care-
fully retargeted to match the H1’s kinematics. The motion
data comprises global root position and orientation (quater-
nion), along with joint angular positions. Simulated experi-
ments are performed in the NVIDIA Isaac Gym environment,
which enables efficient parallel training and evaluation.

A. Distillation Performance
Our first set of experiments evaluates GAD’s ability to

effectively distill privileged information from the teacher pol-
icy while maintaining task performance. We compare GAD
against several baseline distillation approaches, measuring
both task achievement and motion naturalness.

One of the main contributions of this work is the develop-
ment of a Generative Adversarial Distillation method. In this
context, we emphasize the ability of our single teacher dis-
criminator (GAD-SD) to effectively distill knowledge from
the teacher policy. To evaluate this capability, we compare
our method against DAgger, one of the most widely used
distillation methods in robot control.



First, we train an omnidirectional locomotion policy as
the teacher. The command ranges used for both teacher
training and the subsequent distillation experiment are listed
in Table. III. We then leverage the well-trained teacher policy
to guide the learning of the student policy.

TABLE III
RANGES OF LOCOMOTION TASK COMMAND

Parameter Teacher (Unit) Distillation
student (Unit)

StyleLoco
student (Unit)

Forward (vx) [−1.0, 3.5] m/s [−1.0, 3.5] m/s [−1.0, 4.5] m/s
Lateral (vy) [−0.8, 0.8] m/s [−0.8, 0.8] m/s [−1.0, 1.0] m/s
Angular (ωz) [−1.0, 1.0] rad/s [−1.0, 1.0] rad/s [−1.5, 1.5] rad/s

The evaluation metrics include linear velocity tracking re-
ward, angular velocity tracking reward, and average survival
time. As shown in Table IV, while both methods success-
fully learn from the teacher policy, GAD-SD demonstrates
superior performance, particularly in linear velocity tracking
and survival time.

TABLE IV
QUANTITATIVE COMPARISON OF DISTILLATION METHODS

Method
Linear Velocity

Tracking
Reward(±0.1) ↑

Angular Velocity
Tracking

Reward(±0.1) ↑
Average Survival

Time(±15 steps) ↑

Teacher 7.403 2.824 925.9

DAgger 3.744 2.516 506.6
GAD-SD 5.679 2.653 860.3
Notes:
• Teacher: teacher policy trained with privileged information
• GAD-SD: GAD with only teacher distillation discriminator

B. Locomotion Capabilities

The second set of experiments assesses the student policy’s
locomotion capabilities, particularly its ability to track com-
manded velocities while maintaining natural motion patterns.
We compare StyleLoco against state-of-the-art approaches
in terms of tracking accuracy, stability, and style preser-
vation. Table VI shows comparative results across various
performance metrics.

The locomotion task evaluates the ability of student policy
to track local velocity commands comprising three com-
ponents: forward/backward velocity vx, lateral velocity vy ,
and rotational velocity wz . Command values are uniformly
sampled within pre-defined ranges specified in Table. III. For
style imitation, we select four representative motion clips
as reference targets for the style discriminator, with their
corresponding velocity profiles detailed in Table. V.

TABLE V
VELOCITY PROFILES FOR MOTION CLIPS

Vel Profiles Forward
(m/s)

Lateral
(m/s)

Angular
(rad/s)

Slow Forward [0.089, 1.205] [−0.396, 0.188] [−1.734, 0.906]
Medium Forward [0.884, 2.067] [−0.563, 0.306] [−2.044, 1.963]
Fast Forward [2.438, 4.378] [−1.166, 0.943] [−1.555, 3.476]
Move Backward [−1.088, −0.350] [−0.425, 0.365] [−1.580, 1.981]

To comprehensively evaluate our double-discriminator
framework, we compare our method against three baseline
approaches:

• SD-Motion: Single-discriminator approach using only
motion clips as reference.

• SD-Full: Single-discriminator approach using a combi-
nation of teacher policy online roll-out data and motion
clips.

• DAgger+Style: DAgger-based teacher policy distillation
combined with a separate discriminator for style learn-
ing.

The evaluation metrics are similar to those used in the
distillation task experiment, with the addition of energy
consumption.

As demonstrated in Table. VI, our proposed double-
discriminator framework achieves superior performance in
velocity tracking and survival time compared to all baseline
methods. Notably, the SD-Motion approach exhibits the best
energy consumption performance, suggesting that human
motions are inherently energy efficient and properly incor-
porating motion demonstrations during training contributes
to reduced energy consumption.

Fig. 3. From top to bottom, a stylized locomotion demonstration from
LaFAN1 (Top), motions generated by student policy in simulation (Middle),
motions generated by student policy deployed on real H1 robot(Bottom).

C. Evaluations on Style Imitation

To demonstrate our method’s ability to combine robust
locomotion skills with distinct motion styles, we evaluate a
particularly challenging case: synthesizing a limping gait by
combining a regular walking teacher policy with reference
motions exhibiting a distinct limping pattern. Fig. 3 shows



TABLE VI
QUANTITATIVE COMPARISON OF DIFFERENT METHODS ACROSS VARIOUS METRICS

Method Linear Velocity
Tracking Reward(±0.1) ↑

Angular Velocity
Tracking Reward(±0.1) ↑

Average Survival
Time(±15 steps) ↑

Energy
Consumption(±0.001) ↓

SD-Motion 4.229 2.249 813.2 0.065
SD-Full 4.665 2.413 824.1 0.093
DAgger+Style 5.059 2.384 826.9 0.079
GAD (Ours) 5.485 2.644 846.5 0.081
Notes:
• SD-Motion: Single discriminator with only motion demonstrations
• SD-Full: Single discriminator with both teacher roll-outs and motion demonstrations
• DAgger+Style: DAgger distillation with additional style discriminator

the comparison between the original limping motion from
LaFAN1 (visualized in Rerun [37]), the synthesized motion
in Isaac Gym [38], and the deployed behavior on the physical
Unitree H1 robot. The results demonstrate that our method
successfully maintains the characteristic limping style while
preserving the fundamental locomotion capabilities of the
teacher policy.

This fusion of different motion sources creates an inherent
trade-off between style fidelity and command tracking accu-
racy, as the stylized motions often deviate significantly from
the teacher’s optimal movement patterns. Our framework
addresses this challenge through adjustable discriminator
weights, allowing fine-tuned balance between style preser-
vation and task performance.

D. Real Robot Deployment

The real-world deployment of our student policy on the
Unitree H1 robot validates the practical effectiveness of our
approach across various scenarios. As shown in Fig. 1, the
robot demonstrates smooth transitions in both gait patterns
and arm postures when responding to velocity command
changes from low to medium speeds. The policy’s robustness
is further evidenced in Fig. 4, where the robot maintains
stable locomotion at high speeds up to 3 m/s. Most notably,
Fig. 3 showcases our method’s unique capability to synthe-
size stylized gaits that combine the stability of the teacher
policy with distinctive motion patterns from the reference
datasets, resulting in natural and controllable locomotion
behaviors.

V. CONCLUSION AND LIMITATIONS

This paper presents StyleLoco, a novel framework for
humanoid locomotion that bridges the gap between robust
task execution and natural motion synthesis. Through our
proposed Generative Adversarial Distillation approach, we
demonstrate the effective combination of privileged infor-
mation from expert policies with stylistic elements from
human demonstrations. Our extensive experimental results,
including successful deployment on the Unitree H1 robot,
validate the framework’s capability to generate stable and
natural locomotion behaviors across diverse scenarios, from
high-speed running at 3 m/s to stylized gaits such as limping.

The key innovation of our double-discriminator archi-
tecture enables simultaneous learning from heterogeneous

Fig. 4. H1 operating outdoors at forward velocity (vx) of 3 m/s

sources while maintaining deployability through careful
handling of privileged information. Quantitative evaluations
show that StyleLoco outperforms existing approaches in
both task performance and style preservation, demonstrating
superior velocity tracking rewards and survival times while
maintaining natural motion patterns.

Despite these achievements, several important limitations
warrant future investigation. A primary challenge lies in style
disambiguation when motion demonstrations share overlap-
ping velocity ranges, potentially creating ambiguity in style
selection and degrading imitation fidelity. Future research
could explore automatic style clustering or context-aware
selection mechanisms to address this limitation. Addition-
ally, the current implementation relies on manual tuning of
discriminator weights to balance task completion and style
imitation objectives. Developing adaptive weighting schemes
or automated tuning methods could enhance the framework’s
practical applicability. While our method shows impressive
results in locomotion tasks, its generalization to broader
manipulation tasks or more complex behaviors remains to
be explored, opening avenues for future research.

Despite these limitations, StyleLoco represents a step
toward natural and capable humanoid robotics, offering a
promising foundation for future research in combining task-
oriented control with human-like motion generation.
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